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Information on the nature of a process occurring at a certain distance from a receiver 
is transmitted by waves in the medium by the source. As the signal propagates it is atten- 
uated and distorted. Several papers have considered the factors which lead to a significant 
transformation of the signal [I-3]. 

In a systematic approach to the problem, not only the dissipative properties of the me- 
dium must be taken into account, but also its dispersive properties. Indeed, when there is 
partial absorption of the wave by the medium, the medium obtains momentum and this leads to 
motion, which in turn changes the local velocity of the signal and therefore is equivalent 
to dispersion. In general, the relation between the wave parameters of the medium is non- 
local: Processes with different time and spatial scales have their own time and spatial param- 
eters which determine the dependence of the wave number k on frequency p and the real and 
imaginary parts of the wave number k(p) = k'(p) + ik"(p) are connected by a fundamental re- 
lation which follows from the principle of causality [I]. 

In order to find the explicit form of the functional relation between the wave param- 
eters, the internal structure of th~ medium must be taken into account using a mathematical 
apparatus which can adequately describe the scaling phenomena determining the behavior of the 
medium for the range of the parameters under consideration. 

A series of important results on the nature of the propagation of excitations in a re- 
laxing medium were obtained by Mandel'shtam and Leontovich [2, 3]: The wave perturbation 
causes a loss of thermodynamic equilibrium in the medium and the medium returns to a different 
equilibrium state. For a perturbation which changes in time significantly more rapidly than 
the medium can readjust to the new state, the perturbation is propagated in the medium with 
the velocity c~; for changes of the external parameters which are slow compared to the relaxa- 
tion time the propagation velocity of the perturbation is co. 

In the present paper we note that a great deal of data [4] has shown that in geological 
media there is a weak dispersion waves over a wide range of wavelength. This fact can be 
used to obtain an expression for the mass velocity in the wave in a form convenient for anal- 
ysis. 

We solve the one-dimensional wave equation in a uniformisotropic medium in which the 
relation between the stress oij and the deformation rate vij is given by an equation of the 
hereditary type 
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where K(t) and ~(t) 
spectively. 

In the plane case of interest to us, (I) has the form 

t 

[ ~ (t - t') ~ x  (~, t') dt~, E~ (t) = K (1) + ~ ~ (t). (x, 

0 

We assume that the relaxation properties of the medium can be described by a single 
characteristic parameter T (the relaxation time) so that the dependence ET(t) on t and T 
in the form 

(i) 

are the time-dependent bulk modulus and shear modulus of the medium, re- 

is 

i41, 
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E,(t) = Eo + Ep exp (--t/r). 

Using the relation between Oxx(X, t) and Vx(X , t), and also the equation of motion and 
the equation of continuity 

0 0 0 0 
P~ Vx= ~x ~xx ' ~p+~(pvx)=0, 

we obtain assuming that Eo >> Ep the following expression for the mass velocity: 

+{oo,a 
= t e x p [ p t - -  x i--~ I 

- i ~ + a  
(2) o o  

co~ E o + Ep , E o g P p ( P ) =  ~'x(O, t) exp ( - -p t )d t ,  a = - - ,  c 2 - -  2 
C2 oo ~) ~ C O - -  - ' ~ ' .  

0 o o  

Evaluating the integral in (2), we have 

~ (., t / =  o (t3 ~ (o, t ' / +  A ~/~ e ~  (oi ~) i1 (2 ] / ~ )  (t" - ~)-~/~ e~p [ -  ~ (t' - D/~I ~ p  ( -  ~A/~), 
o (3) 

x [ t ,  t > O, 
A = c z ( t - - c t )  x/2%o~ 2, t '  = t - -  - -  O (t) = coo' ~0, t < O. 

If there is a sudden pulse Vx(0 , t) = v06(t) at x = 0 and at the initial instant of time, 
then at distances x and time t the signal takes the form 

�9 ,', (2 ] 
v x ( x ,  t ) = V o O ( t '  ) e x p ( - - T A / a )  6 ( t , ) + A 1 / ~  - - ~  _ 7 (4 )  

�9 t ' l / 2 e x p [ a  ( A + ( z " ;  2t')] / 

As the signal propagates in a weakly dispersive medium, its shape is distorted: The 
leading edge, moving with the velocity c~, decreases exponentially with distance (the maximum 

i/2 amplitude falls off the distance as x- , and the width of the pulse increases with distance 
xl/2 as ). Propagation of a delta-function pulse of this kind was described in [5], where re- 

sults were obtained for wave propagation when the dependence of the attenuation coefficient on 
frequency was linear or quadratic [in the case of the quadratic dependence the dispersion of 
the wave is infinite, co < p/k(p) < ~]. This frequency dependence of the attenuation coef- 
ficient is correct only in the long-wavelength approximation, and use of this relation for 
all frequencies would lead to a violation of the principle of causality. 

When the parameters of the problem are such that 4At' >> I, Eq. (4) takes the form 

/ -  C~ 
o = 0 %  VF)q.  

When the time dependence of the source is of the form vx(O, t)----VoO(t) , the calculation can 
be done as follows. We introduce the substitution t' -- ~ = u under the integral sign, dif- 
ferentiate Vx(X , t) with respect to time, and then expand the resulting expression around the 
value t' = x(1 -- a)/2c~, which gives the largest contribution to the integral. We then inte- 
grate with respect to time and obtain the expression 

t ~ Co v x (X; t) = --~ v 0 ~ --~ I , gP (z) 2Z~ - 1 / 2  e x p  [ - -  v ~] dr, 
0 

g i v e n  i n  [ 6 ] ,  w h e r e  i t  was n o t e d  t h a t  t h e r e  i s  a jump on  t h e  wave f r o n t  i n  a d i s p e r s i v e  m e d i -  
um. However the explicit form of the dependence of the velocity on position and time was not 
obtained and therefore the flow of the medium behind the front could not be studied. 

In the general case of an arbitrary dependence of the input signal on time, the integral 
in (3) can be evaluated approximately using the fact that the function under the integral 
sign is rapidly varying. Except for a small neighborhood (t' -- ~)h < I the in<egral in (3) 
can be written in the form 

tr 
A 1/~ f d~v x (0, ~) exp [-- ag -1 (t' -- [) -- TAlc + 2 ] / ~  ]_. 

O o {4# [a' / '  (t r - ~)l~/~}~/~ 
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Near the point Em = t -- x/c0 the function under the integral sign has a maximum. Expanding 
out the expression in the exponential up to quadratic terms near the extremum point we obtain 

v x (x, t) ~ ~-- ~ d~,, x (0, ~) exp [ ac== ~)'] q- (0, t') exp [-- "~A/al. ,,x (5) 

At large distances from the source, when 2C~T ~ (I --a)X ~aT~cp/2~, the dominant contribution 
to Vx(X, t) is the extremum point gm- In this case 

v=@,.t) ~ vx(O , t -  x/co). 

If the distance from the source is such that 4c~z2(I , ~) ~ 2xT(1 -- a) ~c~T~, then Vx(X , 

t~vx(O, t--x/co)+ vx(O, t--x/c~)exp -- . When the characteristic time constant of the input 

signal T s satisfies the inequality T 2 ~T~ << 2(i -- ~)rx/c=~ then the exponential can be 
evaluated at E = 0 and taken outside of the integral sign and we get 

v~(~,t)~ g4~A~ 3 ~(12h)~  v~(O,t')dt', 
0 

so that at large enough distances the excitation is independent of its original shape and 
will have the shape of a Gaussian, dying out with distance as x -~/2. 

A more�9 picture of the propagation of the signal can be obtained by numerical 
calculations. 

If the input signals is such that yvx(0, t)dt is small, then we can expand the integrand 
0 

in (5) up to terms of order Em/X. An expression for the mass velocity at large distances 
is then given by 

I z t l - -a ) '~X  a~me~ ~dttvx(O ' 

which shows the oscillatory dependence of the velocity Vx(X , t) on time at a fixed distance 
and also shows that the wave damps out with distance according to the dependence ~x -I/2 + 
Bx -3/2. This was apparently observed experimentally [7], where the negative phase of the 
signal was noted and also the dependence of the maximum amplitude on distance as Vm ~ x -1"23 
For certain ~ and ~ such a dependence follows from (5) for a limited range Of x. 

When the input signal depends on time as Vx(0 , t) = v0 Re exp [--yt + i~t], the expression 
for the mass velocity takes the form 

(,, ,) _ ( r  - + r [ -  + 1, 

Using the asymptotic form of ~(x + iy) at large values of the real part of the argument, we 
obtain 

U 0 v x (x, t) ~ -~- He {i q- ~ (~)} exp [~2 --'~2m/A2 ]. (6 )  

For an unattenuated signal y = 0 and it follows from (6) that a harmonic wave dies out ex- 
ponentially with distance: Vx(X , t) ~ exp [-~02Tx/c~]. 

The analysis given here shows that the experimentally determined quantity Vx(X , t) de- 
pends mainly on the relation between parameters of the medium such as the relaxation time T, 
the dispersion ] -- ~, the velocity of the signal, and the time duration of the source, and 
also the distance at which the signal is measured. In order to interpret the experimental�9 
results correctly, it is necessary to use the expression for Vx(X , t) which corresponds to 
the parameters of the problem. Since some of the parameters are determined only by the prop- 
erties of the medium (the wave velocity, relaxation time, dispersion) and the time duration 
of th~ source is determined by the experimental design, the analysis given here indicates a 
lack of similarity between small and large-scale experiments in a dispersive and dissipative 
medium. 
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MEASUREMENT OF THE VELOCITY OF WEAK DISTURBANCES OF BULK DENSITY IN 
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Fire stops with fillings consisting of granulated materials are widely used in the chem- 
ical, gas, and petroleum industries [I]. Present semiempirical estimates make it possible 
in each given case to select the fillings necessary to protect against explosion during pro- 
duction. However, such estimates do not reveal the mechanism of interaction of combustion 
waves and, especially, detonation waves with bulk systems within a broad range of materials 
and sizes of the granules. Nevertheless, it was shown in [2-4] that the combustion and de- 
tonation of gases in inert porous media are quite different from combustion and detonation 
in the absence of a solid phase. This is manifest, for example, in anomalous combustion and 
detonation velocities. 

To determine the mechanism responsible for these phenomena, it is important to consider 
the gasdynamic characteristics of bulk and porous systems, particularly the speed of sound. 
However, it must be noted that one feature of flows of two-phase gas--particle media is the 
presence of friction and heat exchange between the phases. This precludes the existence of 
nonsteady isentropic motions in such systems. 

It is known [5] that the state of a gas in viscous flow can be described by the poly- 
tropy equation 

p p - - n  ~ const, 

w h e r e  p a n d  p a r e  t h e  p r e s s u r e  a n d  d e n s i t y  o f  t h e  g a s ;  n i s  t h e  p o l y t r o p y  i n d e x .  F rom h e r e  
we i n t r o d u c e  t h e  n o t i o n  o f  a c h a r a c t e r i s t i c  v e l o c i t y  o f  t h e  g i v e n  p r o c e s s  [ 5 ] :  

~ =  npP -1" (1)  

When n = y (y is the ratio of the specific heats of the gas), i.e., in the ease of isentropic 
flow, the characteristic velocity will be the speed of sound. 

A large number of studies has been devoted to the question of the speed of sound (i.e., 
the rate of propagation of small pressure perturbations with constant entropy) in a gas--par- 
ticle medium. These studies can be divided into two groups. The first group contains studies 
of systems with a slow volume concentration of solid (or liquid) particles. In this case, a 
gas suspension is equivalent to a gas with the speed of sound [6] 

a~ = a2F [? (t 4- 7) (1 --  ~)2]-i,  ( 2 )  
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